Characterization of physics-based radiative transfer modeling parameters for a blind test airborne hyperspectral data set

نویسندگان

  • Stefania Matteoli
  • Emmett J. Ientilucci
  • John P. Kerekes
چکیده

This work was motivated by the availability of a new ground truthed hyperspectral data set, freely accessible to the scientific community for target detection algorithm testing. In our research, we are interested in physics-based approaches to target detection, i.e. those techniques aimed at modeling the radiation transfer within the atmosphere in order to account for atmospheric/viewing/illumination effects. This is a crucial aspect in target detection applications, where the available information resides in the sensor-acquired radiance image and field-measured spectral reflectances of the targets. Properly backing out the aforementioned effects allows detection to be performed in either of the two domains, i.e. radiance or reflectance. As part of our research into the use of physics-based radiative transfer modeling (RTM) for target detection with these new data, it was important to accurately analyze the available a priori information concerning data acquisition, and investigate the value of enhancing this information by making use of freely accessible meteorological and environmental data. In this work, the characterization procedure of the RTM parameters applied to these data is described, and the corresponding RTM parameters thus obtained are reported. A range of variation for some of these parameters were determined as well, in order to allow for a certain degree of variability around nominal conditions (e.g. spatial variability within the scene, non-perfect acquisition condition knowledge, etc.). Target detection results obtained by adopting the RTM parameters attained by the characterization procedure show similar performance in both the radiance and the reflectance domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Gaseous Effluents from Modeling of LWIR Hyperspectral Measurements

Longwave Infrared (LWIR) radiation comprising atmospheric and surface emissions provides information for a number of applications including atmospheric profiling, surface temperature and emissivity estimation, and cloud depiction and characterization. The LWIR spectrum also contains absorption lines for numerous molecular species which can be utilized in quantifying species amounts. Modeling th...

متن کامل

Characterization of Gaseous Effluents in the LWIR from Both Modeling and Hyperspectral Measurements

Longwave Infrared (LWIR) radiation comprising atmospheric and surface emissions provides information for a number of applications including atmospheric profiling, surface temperature and emissivity estimation, and cloud depiction and characterization. The LWIR spectrum also contains absorption lines for numerous molecular species which can be utilized in quantifying species amounts. Modeling th...

متن کامل

A physically based technology for processing of water basin remote sensing data

The Modular Inversion Program (MIP) is a processing and development tool designed for retrieval and mapping of hydro-biological parameters obtained from multiand hyperspectral remote sensing measurements. The architecture of the program binds a set of general and transferable computational schemes in a chain, connecting bio-physical parameters with the measured reflected radiance. The radiative...

متن کامل

Retrieval of vegetation understory information fusing hyperspectral and panchromatic airborne data

The knowledge of the characteristics of the vegetation cover is of great interest in climate change process understanding due to its important role in controlling water and carbon cycles. The properties of vegetated surfaces are usually estimated from remote observations through semi-empirical regression models or using radiative transfer models, which simulate the interactions of solar radiati...

متن کامل

Radiative heat transfer: many-body effects

Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010